

Current Sensor

SCTX/SCTH Series

Highest Measurement Accuracy: ±(0.008% of rdg + 10uA)
Low Operating Noise
Excellent Stability and Accuracy
Superior Linearity: <5ppm
Ultra-low Temperature Coefficient: 0.1ppm/K
Saturation Detection and Self-recovery Capability
Strong Immunity from Interference
Instant-On: No Warm-up Time

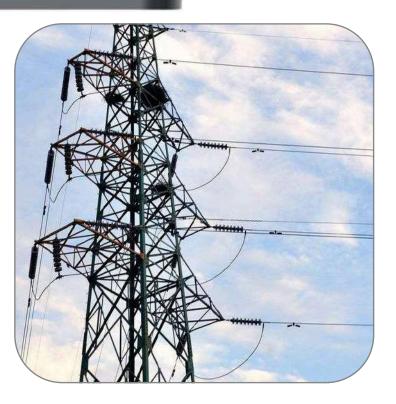
INNO Instrument is a leading provider of high-end equipment with a focus on quality and innovation. Drawing from years of dedicated research and development, our company delivers top-notch products that span various industries, including electric power, energy resources, transportation, automobiles, and telecommunications. Our advanced, reliable, and comprehensive test and measurement solutions are sought after by R&D companies and manufacturers. Through systematic approaches, we address the intricate demands of our customers, actively contributing to the continuous development and updating of global industries.

Applications

Medical Facility

The current sensor can be used as an auxiliary device in medical care, a great help in gaining more precise diagnostic results.

High Accuracy Inverter


The current sensor provides more reliable, highly effective solutions in the inverter manufacturing.

Measuring Instrument

The current sensors exert their advantages in many instrument areas.

Smart Grid

The current sensor plays a great role in the flow measurement of the smart grid.

Model and Technical Specifications

Current Sensor of SCTH

Items	Model					
	SCTH60	SCTH200	SCTH600	SCTH1000		
DC	0-60A	0-200A	0-600A	0-1000A		
AC	60Apeak	200Apeak	600Apeak	1000Apeak		
Accuracy	±(0.05% of rdg + 15μA)					
Measuring Bandwidth	DC-800KHz	DC-500KHz	DC-300KHz	DC-300KHz		
Ratio KN	1:600	1:1000	1:1500	1:2000		
Resistance Rm	0-25Ω	0-25Ω	0-12Ω	0-3Ω		
Aperture	Ф28mm	Ф28mm	Ф30.9mm	Ф30.9mm		
Connector	DB9	DB9	DB9	DB9		
Supply	±12V~±15V	±12V~±15V	±15V~±24V	±15V~±24V		

Current Sensor of SCTX

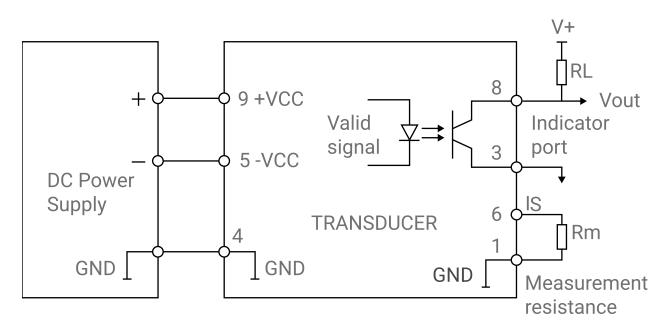
Items	Model					
	SCTX60	SCTX200	SCTX600	SCTX1000		
DC	0-60A	0-200A	0-600A	0-1000A		
AC	60Apeak	200Apeak	600Apeak	1000Apeak		
Accuracy	±(0.01% of rdg + 10μA)	±(0.008% of rdg +10μA)	±(0.008% of rdg +10μA)	±(0.008% of rdg +10μA)		
Measuring Bandwidth	DC-800KHz	DC-500KHz	DC-300KHz	DC-300KHz		
Ratio KN	1:600	1:1000	1:1500	1:2000		
Resistance Rm	0-25Ω	0-25Ω	0-12Ω	0-3Ω		
Aperture	Ф28mm	Ф28mm	Ф30.9mm	Ф30.9mm		
Connector	DB9	DB9	DB9	DB9		
Supply	±12V~±15V	±12V~±15V	±15V~±24V	±15V~±24V		

Usage and Precaution

Definitions of the Terminals

Pin Number	1	6	2、7	3	8	4	5	9
Definition	Output return	Output	Reserved – do not connect	Normal Operation Status -	Normal Operation Status +	GND	-VCC	+VCC

Notes on Measurement


Equation: IP = IS / KN

Where, the primary current (Ip) can be obtained by calculating the test current (IS) flowing through the measuring resistor (Rm).

Notes on Indicators and Signals

Normally, the indicator is always on. If it is off, the current sensor works based on non-zero flux (e.g. bus current over-range). Meanwhile, sweep current inside the sensor makes the current output disproportional to the current input. Only when the bus current falls within the range can the sensor resume working normally. The indicating device and the indicator light are driven by the same signal. The high-low levels are user-definable on the condition of the effective signal output, as shown in the picture A and B.

Connection and Illustration

Indicator Valid 9 +VCC signal port → Vout 5-VCC RL DC Power Supply 6 TRANSDUCER Rm GND GND GND Measurement resistance

V+

Figure A:Active Low Output

Figure B:Active High Output

Specifications on indicator

Connection Mode	Vout (Voltage)	Descriptions
Figure A	<0.8V	Sensor works normally
Figure A	V ⁺	Sensor works abnormally (Overload or power supply failure)
Figure B	<0.2V	Sensor works normally
i igule b	>V+ - 0.8V	Sensor works abnormally (Overload or power supply failure)

Applied voltage and standard resistance recommended

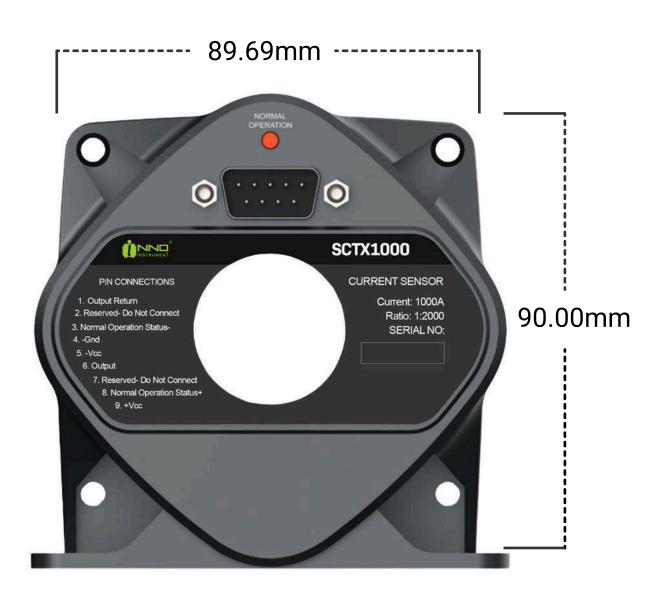
Power Supply V+	RLmin(KΩ)	RLmax(KΩ)	Standard Values ±5%
5V	0.153	1.84	180Ω,1ΚΩ,1.8ΚΩ
12V	0.386	4.64	470Ω,2.2ΚΩ,4.3ΚΩ
24V	0.786	9.44	1ΚΩ,2.2ΚΩ,9.1ΚΩ

Specifications on RL value

RL min(K
$$\Omega$$
) =
$$\frac{V+(V)-0.4(V)}{30\text{mA}}$$
RL max(K Ω) =
$$\frac{V+(V)-0.4(V)}{2.5\text{mA}}$$

Parameters

		General Cl	naracteristic			
Item	Symbol	Condition		Value		Unit
			Min	Тур	Max	
Operating Temperature Range	TA		0		+50	°C
Storage Temperature Range	TS		-25		+85	°C
Relative Humidity	RH		20		80	%


Safety Feature

Voltage		Symbol	Condition	Value	Unit
Isolation Voltage	Between the original and the side	Vd	50/60Hz,1min	2.0	KV
Transient Isolation Withstand Voltage	Between the original and the side	VW	1.2/50us	5	KV
Comparative Tracking Index		СТІ	IEC-60112	600	V

Dimensions of the Current Sensor

Model:SCTH60/SCTX60

Model:SCTH1000 /SCTX1000

Note

- ·The direction of the current Is is positive, when the current IP flows in the directions shown by the arrows;
- ·The temperature of the primary-side conductor should not exceed 100°C;
- ·The sensor described in this manual is standard in configuration. Please contact us if special application is needed.

Email: support@innoinstrument.com

© 2025 INNO Instrument | All rights reserved