

AP15-3CO

DIN Rail Smart Energy Meter for Single and Three Phase Electrical Systems

1 Introduction

This document provides operating, maintenance and installation instructions. This unit measures and displays the characteristics of Single Phase Two Wire (1P2W), Three Phase Three Wire (3P3W) and Three Phase Four Wire (3P4W) networks. The measuring parameters include Voltage (V), Current (A), Frequency (Hz), Power (kW/KVA/KVAr), Power Factor (PF), Imported, Exported and Total Energy (kWh/kVArh). The unit also measures Maximum Demand Current and Power, this is measured over preset periods of up to 60

This particular model accommodates 1A or 5A Current Transformers and can be configured to work with a wide range of CTs. It also comes with a complete comms capability with built in Pulse and RS485 Modbus RTU outputs, configuration is password protected.

This unit can be powered from a separate auxiliary supply (AC or DC). Alternatively, it can be powered from the monitored supply by linking the voltage reference and neutral reference in to terminals 5 & 6 (Please refer to wiring diagram)

1.1 Unit Characteristics

The AP15-3CO can measure and display:

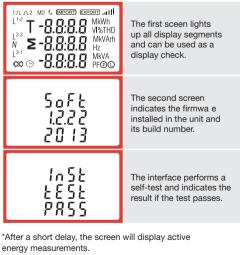
- · Phase to Neutral Voltage and THD% (Total Harmonic Distortion) of all Phases
- · Line Frequency
- · Current, Maximum Demand Current and Current THD% of all Phases
- Power, Maximum Power Demand and Power Factor
- · Imported, Exported & Total Active Energy
- · Imported, Exported & Total Reactive Energy

The unit has a Password-Protected set up menu for:

- Changing the Password
- · System Configuration 1P2, 3P3W, 3P4W,
- Reset for Demand Measurements
- Pulsed Output Duration

1.2 Current Transformer Primary Current

This unit requires configuring to operate with the app opriate curren transformer(s), the optional secondary currents are 1A or 5A. It is programmed by inputting the ratio (CT Primary divided by the CT Secondary). It can be used on primary currents up to 6000A.


1.3 RS485 Serial - Modbus RTU

This unit is compatible with remote monitoring through RS485 Modbus RTU. Set-up screens are provided for configuring the RS485 port. Refers to section 4.8.

1.4 Pulsed Outputs

The AP15-3CO has Two Pulsed Outputs that can be set for active (kWh) or reactive (kWArh) energy. Terminals 11 & 12 have a fixed output of 3200imp/kWh. Terminals 9 & 10 are configurable within the setup menu

2 Start Up Screens

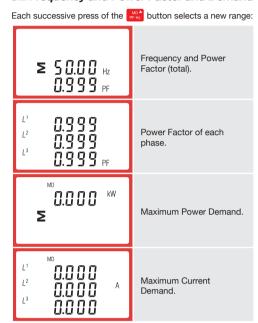
3 Measurements

The buttons operate as follows

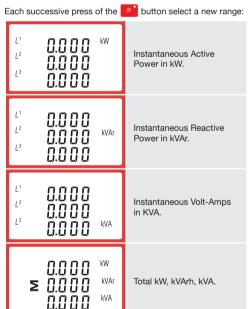
Selects the Voltage and Current display screens. In Set-up Mode, this is the "Left" (press) or "Escape" (hold 3sec)

Select the Frequency and Power factor display screens. In Set-up Mode, this is the "Up" (press) button.

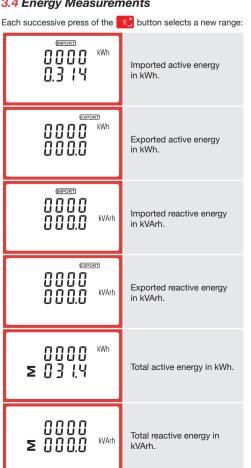
Select the Power display screens. In Set-up Mode, this is the 'Down" (press) button.



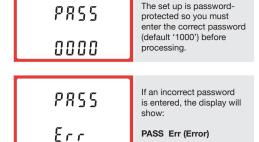
Select the Energy display screens. In Set-up mode, this is the "Right" (press) or "Enter" (hold 3sec) button.


3.1 Voltage and Current

Each successive press of the WA button selects a new parameter: 000.0 L^2 000.0 Phase to neutral voltages 000.0 0.000 0.000 Current on each phase. 0.000 CO.CO V %THD Phase to neutral voltage 00.00 THD% 00.00 Current THD% for each 0 0.0 0 phase 00.00


3.2 Frequency and Power Factor and Demand

3.3 Power


3.4 Energy Measurements

Please note the register is 9999999.9 display over two lines

4 Set Up

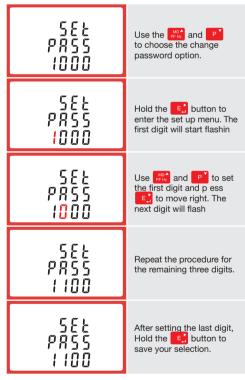
To enter set up mode, hold the Ei button for 3 seconds,

To exit the set up menu, hold the MA for 3 seconds, the measurement screen will display

4.1 Set up Entry Methods

Some menu items, such as Password and CT, require a four-digit number entry while others, such as supply system, require selection from a number of menu options.

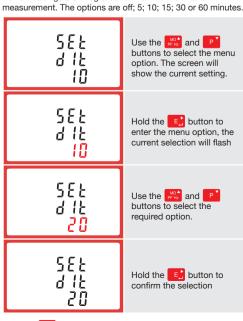
4.1.1 Menu Option Selection


- 1. Use the P buttons to scroll through the different options of the set up menu.
- 2. Hold the E button for 3 seconds to confirm your selection
- 3. If an item flashes, then it can be adjusted by the and buttons.
- 4. Having selected an option from the current layer, hold the 🚼 button for 3 seconds to confirm your selection
- 5. Having completed a parameter setting, hold the
- 6. On completion of all setting-up, hold the MA button for 3 seconds, the measurement screen will then be restored.

4.1.2 Number Entry Procedure

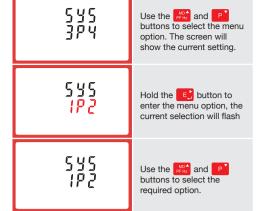
When setting up the unit, some screens require the entering of a number. In particular, on entry to the setting up section, a password must be entered. Digits are set individually, from left to right. The procedure is as follows:

- 1. The current digit to be set flashes and then can be adjusted using the property and property buttons.
- 2. Press the button to more right to the next digit.
- 3. After setting the last digit, hold the button for 3 seconds to save your selection


4.2 Change Password

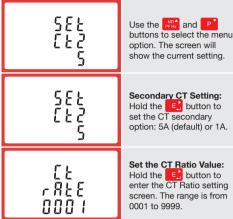
Hold the MA button for 3 seconds to exit the set up menu.

4.3 DIT (Demand Integration Time)


This sets the period (in minutes) in which the Current and Power readings are integrated for maximum demand

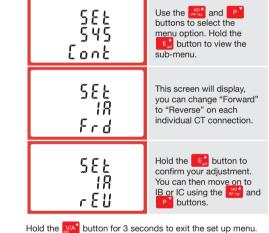
Hold the WA button for 3 seconds to exit the set up menu.

4.4 Supply System

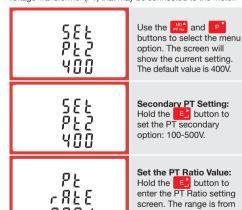

The unit has a default setting of 3 Phase 4 Wire (3P4W). Use this section to set the type of electrical system.

Hold the button to confirm your adjustment. Hold th button for 3 seconds to exit the set up menu.

4.5 CT Configuration


The CT options set the Secondary Current (CT2 5A or 1A) of the Current Transformer (CT) that are used with the meter.

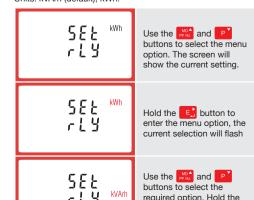
The CT Rate is the CT Primary divided by the CT Secondary. For Example: 200/5A Current Transformers - 200÷5=40, so the CT Rate would be 0040 and the CT2 would be 5.


4.5.1 CT Reversal

If the CT connections are incorrectly wired, they can be reversed through the "Set System Continued" menu:

4.6 PT

The PT option sets the Secondary Voltage (PT2 100-500V) of the Voltage Transformer (PT) that may be connected to the meter.


The PT Rate is the PT Primary divided by the PT Secondary. For Example: Voltage Transformer - 11000÷110=100, so the PT Rate would be 0100 and the PT2 would be 110.

0001 to 9999.

4.7 Pulsed Output

|| UUU |

Use this section to configu e the Pulsed Output Type. Units: kVArh (default): kWh.

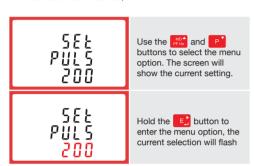
Hold the Mai button for 3 seconds to exit the set up menu.

4.7.1 Pulse Rate

You can configue the number of pulses to relate to a defined amount of Total Energy.

Please note there are limitations that need to be factored in when setting the pulsed output. This is based upon the relay output only being able to pulse 2 times per second.

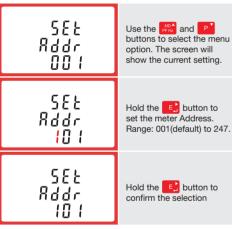
For example, If the CT is set to 500/5A on a Single Phase network this would generate (500Ax230V=115,000 / 1000) 115kWh which is 31W per second. A setting of 10IMP/kWh (10 pulses per kWH) would generate 3 pulses per second. This will exceed the 2 pulse per second limitation.


Pulse settings: 1 Pulse per: 10W (0.01) / 100W (0.1) / 1000W/1kWh (1) / 10kWh (10) / 100kWh (100) /1000kWh

Use the price and price buttons to choose the desired pulse rate. To save the new setting, hold the button for 3 seconds until the selection stops flashing

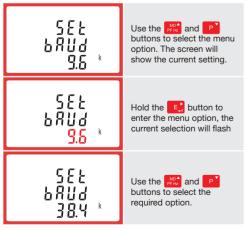
4.7.2 Pulse Duration

The energy monitored can be active or reactive and the pulse width can be selected as 200, 100 or 60mS.

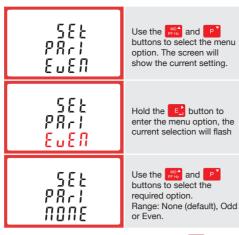


Use the policy and buttons to choose the desired pulse rate. To save the new setting, hold the seconds until the selection stops flashing

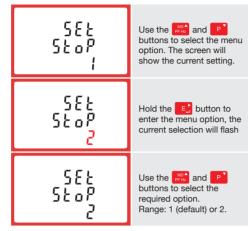
4.8 Communication


The RS485 port can be used for communication using Modbus RTU Protocol. To configu e the Modbus settings, such as Address and Baud Rate, this is also done within the Password-protected set up menu.

4.8.1 RS485 Address


Use the press the buttons to choose the necessary number, then press the button to move along to the next number. To save the new setting, hold the button for 3 seconds until the selection stops flashing

4.8.2 Baud Rate


On completion of the entry procedure, hold the E button to confirm the setting

4.8.3 Parity

On completion of the entry procedure, hold the 🔁 button for 3 seconds until the selection stops flashing


4.8.4 Stop bits

On completion of the entry procedure, hold the button for 3 seconds until the selection stops flashing

4.9 CLR

The meter provides a function to reset the maximum demand value of current and power.

Hold the button to confirm the setting and press was to return to the main set up menu

5 Specifications

5.1 Measured Parameters

The unit can monitor and display the following parameters of a Single Phase Two Wire (1P2W), Three Phase Three Wire (3P3W) or Three Phase Four Wire (3P4W) system.

5.1.1 Voltage and Current

- · Phase to Neutral Voltages 100-289V AC (not for 3P3W supplies)
- · Phase to Phase Voltages 173-500V AC (3 Phase supplies only).
- · Percentage Total Voltage Harmonic Distortion (V %THD) for each Phase to Neutral (not for 3P3W supplies).
- Percentage Total Voltage Harmonic Distortion (V% THD)
- between Phases (3 Phase supplies only).
- · Current %THD for each Phase.

5.1.2 Power factor and Frequency and Max. Demand

- · Frequency in Hz
- Instantaneous power
- Power 0-3600 MW
- Reactive power 0-3600 MVAr · Volt-amps 0-3600 MVA

Three Phase supplies only)

- · Maximum Demand Power since last reset Power factor
- · Maximum Neutral Demand Current, since the last reset (for

5.1.3 Energy Measurements

· Imported/Exported active energy 0 to 9999999.9 kWh

• Imported/Exported reactive energy 0 to 9999999.9 kVArh

· Total active energy 0 to 9999999 9 kWh Total reactive energy 0 to 9999999.9 kVArh

5.2 Measured Inputs

Voltage inputs through 4-way fixed connector with 2.5mm² stranded wire capacity. Single Phase Two Wire (1P2W), Three Phase Three Wire (3P3W) or Three Phase Four Wire (3P4W) unbalanced. Line frequency measured from L1 Voltage or L3 Voltage. Three current inputs (six physical terminals) with 2.5mm² stranded wire capacity for connection of external CTs. Nominal rated input current 5A or 1A AC RMS.

5.3 Accuracy

Voltage

0.5% of range maximum 0.5% of nominal Current Frequency 0.2% of mid-frequency Power factor 1% of unity (0.01) Active power (W) ±1% of range maximum • Reactive power (VAr) ±1% of range maximum ±1% of range maximum · Apparent power (VA) Class 1 IEC 62053-21 Active energy (Wh) · Reactive energy (VARh) ±1% of range maximum · Total harmonic distortion 1% up to 31st harmonic · Response time to step input 1s, typical, to >99% of final eading, at 50 Hz.

5.4 Auxiliary Supply

Two-way fixed connector with 2.5mm² stranded wile capacity. 85-275V AC 50/60Hz ±10% or 120-380V DC ±20%. Consumption <2W 10VA.

5.5 Interfaces for External Monitoring

Three interfaces are provided

- \bullet RS485 communication channel that can be programmed for Modbus RTU protocol
- · Relay output indicating real-time measured energy. (configurable
- Pulse output 3200IMP/kWh (not configurable

The Modbus configuration (baud rate etc.) and the pulse relay output assignments (kW/kVArh) are configu ed through the set-up screens.

5.5.1 Pulse Output

Opto-coupler with potential free SPST-NO Contact (Contact rating 5-27V DC / Max current input: Imin 2mA and Imax 27mA DC). The pulse output can be set to generate pulses to represent kWh or kVArh.

Rate can be set to generate 1 pulse per

0.01 = 10 Wh/VArh0.1 = 100 Wh/VArh

1 = 1 kWh/kVArh

10 = 10 kWh/kVArh100 = 100 kWh/kVArh

Pulse width 200/100/60 mS.

5.5.2 RS485 Output for Modbus RTU

For Modbus RTU, the following RS485 communication parameters can be configu ed from the set-up menu:

Baud rate: 2400, 4800, 9600, 19200, 38400

Parity: none (default) / odd / even

Stop bits: 1 or 2

RS485 Network Address: 3 digit number - 001-247

Modbus™ Word order Hi/Lo byte order is set automatically to normal or reverse. It cannot be configu ed from the set-up menu.

5.6 Reference Conditions of Influence Quantities

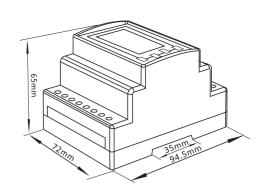
Influence Quantities a e variables that affect measurement errors to a minor degree. Accuracy is verified under nominal value (within the specified tolerance) of these conditions

23°C ±1°C · Ambient temperature 50 or 60Hz ±2% Input waveform Sinusoidal (distortion Input waveform factor < 0.005) Auxiliary supply voltage Nominal ±1% · Auxiliary supply frequency Nominal ±1% • Auxiliary supply waveform (if AC) Sinusoidal (distortion factor < 0.05) · Magnetic field of exte nal origin Terrestrial flu

5.7 Environment

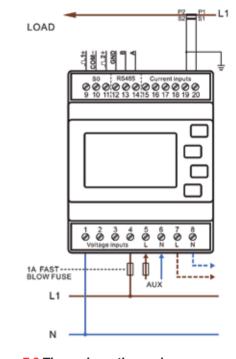
-25°C to +55°C* · Operating temperature -40°C to +70°C · Storage temperature 0 to 95%, · Relative humidity non-condensing Up to 3000m Altitude · Warm up time 1 minute 10Hz to 50Hz, IEC 60068-2-6, 2g Shock 30g in 3 planes

*Maximum operating and storage temperatures are in the context of typical daily and seasonal variation.

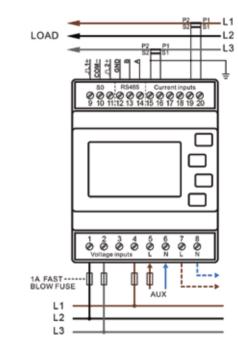

5.8 Mechanics

 DIN rail dimensions 72 x 94.5 mm (WxH) per DIN 43880 Mounting DIN rail (DIN 43880) IP51 indoor Sealing Self-extinguishing UL Material 94 V-0

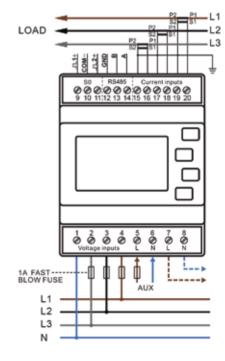
5.9 Declaration of Conformity


We, Sifam Tinsley Instrumentation LTD, declare under our sole responsibility as the manufacturer that the poly phase multifunction electrical energy meter "AP15-3CO" correspond to the production model described in the EC-type examination certificate and to the equirements of the Directive 2004/22/ EC EC type examination certificate number 0120/SGS0209 Identification number of the NB 0120.

6 Dimensions



7 Installation


7.1 Single phase two wires

7.2 Three phase three wires

7.3 Three phase four wires

